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Abstract This work reports on a novel BiOI/WO3

composite photoanode, which was fabricated by deposit-
ing BiOI onto a WO3 nanoflake electrode through a
electrodeposition method. The photoelectrochemical
(PEC) activity of the BiOI/WO3 electrode for water
splitting under visible-light irradiation was evaluated.
The results show that the BiOI/WO3 photoanode achieved
a photocurrent density of 1.21 mA$cm–2 at 1.23 V vs.
reversible hydrogen electrode (RHE), which was higher
than that of the bare WO3 nanoflake electrode (0.67 mA
$cm–2). The enhanced PEC acticity of BiOI/WO3 for water
splitting can be attributed to the expansion of light
absorption range as well as the facilitated separation of
photo-generated carriers.

Keywords photoelectrochemistry, WO3, BiOI, water
splitting*

1 Introduction

Photoelectrodes of semiconductor oxides have been
widely investigated for photoelectrochemical (PEC)
water splitting for hydrogen production [1–7]. Recently,
great attentions have been attracted for the n-type WO3

photoanode, which has favorable valence band edge (3.0
eV versus normal hydrogen electrode), moderate hole
diffusion length (~150 nm) and high electron mobility (~12
cm2$V–1$s–1) [8]. However, its PEC property is always
limited by the relatively narrow absorption band (Eg =
2.5 – 2.8 eV), rapid recombination of photo-generated
electron-hole pairs and tardy kinetics of holes [9]. WO3

photoanode is not suitable for efficient PEC water

oxidation unless credible methods can be developed to
improve its visible light absorption capacity and promote
the separation of photo-generated electron-hole pairs [10].
Various strategies have been employed to solve the

above mentioned problems, including doping [11], nanos-
tructure engineering, combination of semiconductors with
small band gaps and so on [12–14]. For the nanostructured
electrodes such as one dimensional nanorods, nanotubes
and two dimensional nanoflakes, direct electrical pathways
could be obtained for the photo-generated charges, and the
diffusion lengths of the minority carriers could also be
reduced, which lead to superior charge separation and
transportation and thus excellent PEC properties [15]. For
example, Amano et al. reported a 3.6 mm-thick WO3 film
consisting of perpendicularly oriented crystalline flakes
fabricated with hydrothermal method, which exhibited a
much larger photocurrent density of ~ 2 mA$cm–2 than the
nanocrysalline WO3 thin film at 1.2 V vs. Ag/AgCl
electrode in 0.1 mol$L–1 Na2SO4 electrolyte [16].
Although the construction of nanostructured electrodes
could enhance the separation of photogenerated carriers,
the light absorption range of bare WO3 was limited due to
its inherent nature. The design of semiconductor composite
was the most widely approach to develop photoelectroca-
talytic materials in the past few decades. Among the
numerous semiconductor composites, the p-n heterostruc-
tured systems with a staggered (Type II) band alignment
have drawn much attention due to their enhanced efficient
charge separation. In the composite system, materials with
small band gaps could be used to broaden its light
absorption range [10,17]. BiOX (X = Cl, Br, I) is a
promising candidate semiconductor, due to the strong
internal electric fields from a layered structure with [Bi2O2]
slabs interleaved with double halogen atom slabs along the
[0 0 1] direction, leading to increase effective separation of
the electron-hole pairs [18]. Among the BiOX semicon-
ductors, BiOI has the smallest band-gap (1.8 eV) which
could be motivated under most of the visible light range,
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with a BiOI modification can effectively enhance the PEC
properties of the semiconductor photoelectrodes, such as
BiOI/ZnO [19], BiOI/TiO2 [20], BiOI/BiVO4 [21]. How-
ever, there are few works focusing on the preparation and
property of BiOI/WO3 electrode for PEC water splitting.
In our work, we fabricated WO3 nanoflakes by a seed-

mediated hydrothermal method, which were uniformly
distributed on the F doped SnO2 substrate. Subsequently,
BiOI were deposited through an electrodeposition method,
and crossed network structure for the BiOI/WO3 electrode
was thus obtained. The as-prepared BiOI/WO3 nanocom-
posite electrode exhibited a significantly improved photo-
current density in Na2SO4 solution under AM 1.5G
illumination. The enhanced activity was mainly ascribed
to the decoration of BiOI, which expanded light absorption
range and facilitated separation of photo-generated carriers
for the BiOI/WO3 electrode.

2 Experimental section

2.1 Preparation of WO3 photoanode

The WO3 nanoflake photoanode was synthesized by
hydrothermal reaction with seed-mediating according to
our previously reported process [22]. The seed layer was
deposited onto F doped SnO2 (FTO) substrate by spin
coating followed by annealing. The H2WO4 solution for
the spin-coating process was prepared by dissolving
H2WO4 (2.5 g) and poly(vinyl alcohol) (1 g) into of
H2O2 (30 wt. %, 34 mL). Another H2WO4 solution was
prepared by adding H2WO4 (2.5 g) and H2O2 (30 wt.%, 34
mL) into deionized water (50 mL), which was heated at
95°C to form a clear solution and then diluted to a
concentration of 0.05 mol$L–1 for the solvothermal
process. The WO3 nanoflake film was grown by adding
urea (0.02 g), oxalic acid (0.02 g), HCl (6 mol$L–1, 0.5 mL)
and H2WO4 solution (0.05 mol$L–1, 3 mL) into acetonitrile
(12.5 mL). The mixture was then transferred into a
Teflonlined autoclave containing the seeded FTO substrate
and then maintained at 180°C for 2 h. The resulting
substrate after solvothermal process was washed with
deionized water and dried with nitrogen flow, and then
annealing at 500°C for 2 h in air to obtain the WO3

photoanode.

2.2 Preparation of BiOI/WO3 photoanode

The BiOI/WO3 photoanode was synthesized by an
electrodeposition method [23]. In a typical process, a
solution containing Bi(NO3)3$5H2O (0.04 mol$L–1) and
KI (0.4 mol$L–1) was adjusted to pH 1.7 by adding HNO3,
and then 20 mL of absolute ethanol containing p-
benzoquinone (0.23 mol$L–1) was added into the above
solution with vigorously stirring for a few minutes at room
temperature. The WO3 electrode, Ag/AgCl electrode and

Pt wire were served as the working electrode, reference
electrode and counter electrode, respectively. Then BiOI
was electrodeposited at – 0.1 V vs. Ag/AgCl for different
deposition times (5 – 25 s). The optimal deposition time
was 15 s, and the corresponding photocurrent density was
1.21 mA$cm–2 at 1.23 V vs. reversible hydrogen electrode
(RHE).

2.3 Sample characterization

X-ray diffraction (XRD) patterns of the electrodes were
collected on an X-ray diffractometer (X' Pert PRO,
PANalytical B.V.) using Cu Kα source radiation
(1.540598 Å). Scanning electron microscopy (SEM,
Nova NanoSEM 450, FEI) was used to investigate the
surface morphologies of the samples. X-Ray photoelectron
spectroscopy (XPS, AXIS-ULTRA DLD-600W, Shimdzu)
was obtained to investigate chemical states of the samples.
Raman spectra were recorded on a Raman spectrometer
(LabRAM HR800) using a 532 nm laser as excitation
source. UV-visible absorption spectra were obtained using
a spectrophotometer (UV-3600, Shimdzu).

2.4 Photoelectrochemical measurements

PEC properties were investigated in a standard three-
electrode configuration using CHI 630D electrochemical
workstation (Chenhua, Shanghai, China). The as-synthe-
sized samples acted as the working electrode, Ag/AgCl
electrode and Pt wire as the reference electrode and counter
electrode, respectively. 0.5 mol$L–1 of Na2SO4 solution
was used as the electrolyte. All potentials were converted
to RHE according to the Nernst equation: ERHE = EAg/AgCl

+ EΘAg/AgCl+ (0.059 � pH), where EΘAg/AgCl is
0.197 V at 25°C. A gas chromatography ((Trustworthy
Instrument, GC-2020N, China) with argon as a carrier gas
was used for the analysis of the evolved gas. Electro-
chemical impedance spectroscopy (EIS) measurement was
performed using an electrochemical impedance analyzer
(CHI-920C) over a frequency range between 100 kHz and
0.1 Hz with an AC voltage magnitude of 5 mVamplitude at
a bias potential of 1.23 V (vs. RHE).

3 Results and discussion

XRD measurements were carried out to determine the
crystal phase of the samples. Figure 1(a) shows the XRD
patterns of the WO3, BiOI and BiOI/WO3 electrodes. After
subtracting the diffraction peaks of FTO substrate, all other
peaks in the XRD pattern of BiOI/WO3 electrode can be
indexed into tetragonal BiOI (JCPDS No. 00-010-0445)
and monoclinic WO3 (JCPDS No. 00-043-1035) [24,25].
The Raman spectra of BiOI, WO3 and BiOI/WO3 were
presented in Fig. 1(b). The strong peaks at 85 and 147 cm–1

are assigned to Bi-I vibration of BiOI [21]. The peaks at
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715 and 806 cm–1 are ascribed to W-O bending (d) and
W-O stretching (n) modes respectively. The peaks at 272
and 326 cm–1 correspond to the bending d (O-W-O)
vibrations, and the peak at 135 cm–1 are assigned to the
lattice vibrations of WO3 [26].
The SEM images of WO3 and BiOI/WO3 electrodes

were depicted in Fig. 2. Figure 2(a) suggests that the
pristine WO3 sample displays uniform and vertically
aligned nanoflakes. The SEM images in Fig. 2(b) clearly
revealed the successful deposition of BiOI sheets, which
attached onto the surfaces of WO3 nanoflakes and formed
crossed networks. The coating of BiOI caused an obvious
color change from pale yellow to orange (digital photo-
graphs shown in the inset of Fig. 2), identifying the
formation of BiOI/WO3 composite electrode.
The chemical states of the samples are investigated by

XPS. Figure 3 shows the high-resolution XPS spectra of
BiOI/WO3 electrode. As shown in Fig. 3(a), the two peaks
with binding energy of 38.0 and 35.9 eV correspond well

with the characteristic W 4f5/2 andW 4f7/2 of W
6 + in WO3,

respectively [27]. Two strong peaks located at 164.4 and
159.0 eV in Fig. 3(b) are attributed to Bi 4f5/2 and Bi 4f7/2
of Bi3+ in BiOI, which are in agreement with the reported
values [19]. The peaks centered at 630.4 and 618.9 eV in
Fig. 3(c) are assigned to I 3d3/2 and I 3d5/2, respectively
[18]. The O 1s spectrum in Fig. 3(d) could be deconvoluted
into three peaks, which are related to Bi-O bonds (530.4
eV) of BiOI, W-O bonds (530.9 eV) of WO3 and O-H
bonds (531.9 eV) of the surface-adsorbed water, respec-
tively [28–30].
Figure 4(a) shows the UV-visible absorption spectra of

the WO3, BiOI and BiOI/WO3 electrodes. Bare WO3

nanoflakes exhibit intrinsic absorption in the wavelength of
300 – 450 nm. While, a rather broad absorption range of
300 – 630 nm was observed for the BiOI/WO3 composite,
which was due to the good visible light response of BiOI.
Furthermore, the indirect bandgaps of BiOI and WO3 were
determined by plotting the square root of the absorption

Fig. 1 (a) XRD patterns of BiOI, WO3 and BiOI/WO3; (b) Raman spectra of BiOI, WO3 and BiOI/WO3

Fig. 2 SEM images of WO3 (a) and BiOI/WO3 (b) electrodes and their digital photographs (inset)
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energies against the photon energies. By extrapolating the
linear portions to zero (Fig. 4(b)), the band gaps were
estimated to be 1.95 and 2.72 eV for BiOI and WO3,
respectively, which are consistent with previous reports
[31].

Linear sweep voltammogram (LSV) measurements were
conducted in 0.5 mol$L–1 Na2SO4 electrolyte to evaluate
the PEC response of the samples. As shown in Fig. 5(a),
both of the samples show negligible dark current densities.
Upon illumination, the BiOI/WO3 composite electrode

Fig. 3 High-resolution XPS spectra of the BiOI/WO3 electrode: (a) W 4f, (b) Bi 4f, (c) I 3d and (d) O 1s

Fig. 4 (a) UV-visible absorption spectra of BiOI, WO3 and BiOI/WO3 electrodes; (b) Tauc plots converted from the UV-visible
absorption spectra for BiOI and WO3
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achieved a photocurrent density of 1.21 mA$cm–2 at 1.23
V vs. RHE, which was 1.81 times as high as that of the
pristine WO3 nanoflakes (0.67 mA$cm–2). Figure 5(b)
depicted the incident photon to current conversion
efficiency (IPCE) spectra of the pristine WO3 and as-
prepared BiOI/WO3 electrodes at 1.23 V vs. RHE. As can
be seen, the WO3 electrode exhibited significant photo-
current response in the wavelength range of 350 – 450 nm,
which was due to its intrinsic absorption. An obvious red-
shift up to approximately 600 nm of the IPCE spectrum
was observed for the BiOI/WO3 composite electrode,
indicating the visible-light response of BiOI. Furthermore,
the IPCE values for the BiOI/WO3 composite electrode
were higher than those of bare WO3. In particular, the
IPCE values at 405 nm for the WO3 and BiOI/WO3

electrodes reached 7.3% and 22.2%, respectively. These
results indicated that the modification of BiOI improved
the PEC activity of WO3.
Figure 6(a) shows the photocurrent densities of the

obtained electrodes measured at 1.23 V vs. RHE in 0.5
mol$L–1 Na2SO4 electrolyte. The photocurrent of the bare
WO3 electrode attenuated quickly at the initial time, and
lost 53% of the pristine value within 2000 s. However, the
BiOI/WO3 electrode exhibited a smaller attenuation of
28% as compared with that of the bare WO3. Furthermore,
the gaseous products of the WO3 and BiOI/WO3 electrodes
were measured as a function of time at 1.23 V vs. RHE in
0.5 mol$L–1 Na2SO4 electrolyte. As can be seen in Fig. 6
(b), the amounts of H2 and O2 were close to the theoretical
amounts determined by integrating the measured photo-
current over time. What’s more, the proportion of evolved
H2 and O2 was 2:1, indicating that the observed
photocurrent is real water splitting photocurrent, rather
than due to photodegradation.
Electrochemical impedance spectroscopy (EIS) mea-

surements were implemented to study the interface charge
transport properties of the electrodes. The charge-transfer
resistance at the electrode-electrolyte interface can be

Fig. 5 (a) LSV scans of the WO3 and BiOI/WO3 electrodes in 0.5 mol$L–1 Na2SO4 electrolyte; (b) IPCE plots of the WO3 and BiOI/
WO3 electrodes at 1.23 V vs. RHE in 0.5 mol$L–1 Na2SO4 electrolyte

Fig. 6 Photocurrent density-time curves (a) and amounts of the theoretical and actual evolved gas (b) for the WO3 and BiOI/WO3

electrodes in 0.5 mol$L–1 Na2SO4 electrolyte
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reflected from the semicircle in the Nyquist plots [32]. As
shown in Fig. 7(a), the BiOI/WO3 electrode exhibited a
smaller semicircle as compared with that of WO3, and it
indicated that the introduction of BiOI led to an efficient
separation of the electron-hole pairs for the composite
electrode, in accordance with its improved PEC activity.
Furthermore, the band energies of BiOI and WO3 were
also investigated. The conduction band (CB) and valence
band (VB) edge at the point of zero charge for a
semiconductor can be determined from the empirical
equation [21]:

EVB ¼ X –Ee þ 0:5Eg,

ECB ¼ EVB –Eg,

where EVB is the valence band edge potential, and Ee is the
energy of free electrons on the hydrogen scale (~4.5 eV). X
and Eg are the electronegativity and band-gap energy of the
semiconductor, respectively. The X values of BiOI and
WO3 are 5.94 and 6.59 eV. As shown in Fig. 7(b), pristine
BiOI and WO3 owned their respective band energies
before contact, which were obtained from the above UV-
visible absorption spectra. When these two semiconductors
are in contact, the photo-generated electrons and holes will
be generated both in BiOI and WO3 as the solar light
illuminate on the BiOI/WO3. The holes in WO3 diffuse to
BiOI, and caused efficient separation for the photo-
generated electrons and holes. The recombination process
is thus remarkably suppressed, leading to improved PEC
water splitting activity.

4 Conclusion

In summary, we have successfully fabricated a WO3

nanoflake electrode by a seed-mediated solvothermal
method, followed by loading with BiOI through electro-

depositing. The novel BiOI/WO3 nanocomposite electrode
achieved an enhanced PEC activity for water splitting,
which may be attributed to the expansion of light
absorption range as well as the facilitated separation of
photo-generated carriers. These findings prove that the
BiOI/WO3 photoanode is a promising candidate for PEC
water oxidation.
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